Matrices and Calculus: Unit IV: Integral Calculus

Questions and Answers

Solved Problems | Integral Calculus | Matrices and Calculus | Matrices and Calculus

Questions and Answers: Matrices and Calculus: Integral Calculus

PART A 

QUESTIONS AND ANSWERS

1. Evaluate interpreting it in terms of area.

Ans: 



2. Evaluate interpreting in terms of area.

Ans: 



3. Express in [2, 6], as a definite integral.

Ans: 



4. Express the integral as limit of Riemann sum.

Ans:



5. Evaluate interpreting as area.

Ans:



6.

Ans: 


= 2 × 37 + 3 × 16 = 122


7. If

Ans: 



8. Express as definite integral

Ans: 



9. Find the derivative of

Ans: 



10. Find

Ans:



11. If y =

Ans:



12. Find the fallacy


Ans:



13. Evaluate

Ans: 



14. Evaluate

Ans: 



15. If

Ans: 



16.

Ans: 



17. Prove that is a constant, find the constant

Ans: 



18. If In a = 2, ln b = −3 then find

Ans: 


In ab2 = In a +2 ln b = 2 + 2(-3) = - 4


19. Evaluate

Ans: 



20. Evaluate

Ans: 



21. With a suitable substitution transformation the integral to one in the list of integrals?


Ans: 



22. If y =

Ans: 



23. If f(x) = 12, then, f' is continuous and What is the value of f(4)?

Ans: 



24. Evaluate 

Ans: 



25. Verify by differentiation that the formula is correct

Ans: 


We have to check it is correct or not by differentiation

Differentiate w.r. to x, we get


= cos x – sin2 x cos x

= cos x (1 - sin2x)

= cos x cos2x = cos3x, which is true

⸫ the given formula is correct


26. Evaluate using a formula in the list (without substitution)

Ans: 



27. Evaluate

Ans: 



28. If f is continuous and

Ans: 



29. If ƒ is continuous on [a, b], then

True or false

Ans: 

False, we cannot bring variable out of the integral sign.



30. True or false

Ans: True



31.   represents the area under the curve y = xx2 True or false

Ans: 


Since f(x) is not ≥ 0 x [0, 2], we can not say it is the area under the curve.


32. True or false

Ans: 

True



33. Evaluate

Ans: 



34. Evaluate 

Ans: 



35. Test the convergence of

Ans: 


So, the integral is not convergent it is divergent


36. Test the convergence of

Ans: 


Hence, the integral is convergent


37. Indicate the type of improper integral and test its convergence

Ans: 


⸫ The integral is convergent.


38.

Ans: False



39.   is a proper or improper integral? Why?

Ans:


It is improper integral of second kind or type.


40.

Ans:


Hence convergent True


41.

Ans:



42. Evaluate

Ans: 0

⸪ sin3x cos2x is an odd function


43. Let f be a positive function


Ans: 



44. Suppose ƒ and g are continuous functions in (—∞, ∞)


Ans:



45. Find the value of

Ans:



46. Find

Ans:


⸫ ƒ is even function



47. If

Ans:



48. Find

Ans: 



49. Evaluate

Ans: 



50. Evaluate

Ans: 



51. Evaluate

Ans: 



52.

Ans: 


Let t = sin θ – cos θ

dt = cos θ + sin θ


Matrices and Calculus: Unit IV: Integral Calculus : Tag: : Solved Problems | Integral Calculus | Matrices and Calculus | Matrices and Calculus - Questions and Answers