A square matrix A and its transpose AT have the same eigen values.
Properties of eigen values 1. A square matrix A and its transpose AT have the same eigen values. Proof Eigen values of A are the roots of its characteristic equation This shows that the characteristic polynomial of A and AT are the same. Hence the characteristic equations of A and AT is (1). ⸫ A and AT have the same eigen values. 2. Sum of the eigen values of a square matrix A is equal to the sum of the elements on its main diagonal. Proof Let A be a square matrix of order n. Note Sum of the diagonal elements of A is called the trace of A. ⸫ Sum of the eigen values = trace of A 3. Product of the eigen values of a square matrix A is equal to │A│. Proof Let A be a square matrix of order n. Then its characteristic equation is | A-λI | = 0 If λ1, λ2,...., λn are the n roots of (1), then from theory of equations, Note If at least one eigen value is 0, then |A|= 0 ⸫ A is a singular matrix. If all the eigen values are non-zero, then |A| ≠ 0 ⸫ A is a non-singular if all the eigen values are non-zero. 4. If λ1, λ2,...., λn are non-zero eigen values of square matrix of order n, then Proof Let λ be any non-zero eigen value of A, then there exists a non-zero column matrix X such that AX = λX. Since all the eigen values are non-zero, A is non-singular. So 1/λ is an eigen value of A-1. This is true for all the eigen values of A. ⸫ 1/λ1, 1/λ2, …, 1/λn are the eigen values of A-1. Note that the eigen vector for A corresponding to 1/λ is also X. 5. If λ1, λ2,...., λn are the eigen values of A, then (i) cλ1, cλ2,...., cλn are the eigen values of cA, where c ≠ 0 (ii) λ1m, λ2m,...., λnm are the eigen values of Am, where m is a positive integer. Proof Let λ be any eigen value of A, then there exists a non-zero column matrix X such that AX = λ X (i) Multiply by c ≠ 0 then c(AX) = c(λX) ⇒ (cA) X = (cλ) X ⸫ cλ is an eigen value of cA. This is true for all eigen values of A. ⸫ c λ1, c λ2, ..., c λn are the eigen values of cA. (ii) Now A2X = A(AX) = A(λ X) [using (1)] = λ (AX) = λ (λ X) ⸫ A2X = λ2 X ⇒ λ2 is an eigen value of A2. Similarly A3X = A(A2X) = A(λ2X) = λ2 (AX) = λ2 (λX) A3X = λ3X ⇒ λ3 is an eigen value of A3. Proceeding in this way, we have AmX = λmX for any positive integer m. This is true for all eigen values. ⸫ λ1m, λ2m,...., λnm are eigen values of Am. 6. If λ1, λ2,...., λn are the eigen values of A, then (i) λ1 – k, λ2 – k,..., λn – k are the eigen values of A - KI. (ii) α0 λ12 + α1λ1 + α2, α0 λ22 + α1λ2 + α2,..., ‚ α0 λn2 + α1λn + α2 are the eigen values of α0A2 + α1A + α2I. Proof Let λ be any eigen value of A then AX = λ X (1) where X ≠ 0 is a column matrix. ⸫ AX - KX = λ X - KX ⇒ (A – KI)X = (λ – K)X ⸫ λ - K is an eigen value of A – KI. This is true for all eigen values of A. ⸫ λ1 — K, λ2 — K,..., λn -K are the eigen values of A – KI. (ii) We have AX = λ X and A2X = λ2X. ⸫ α0 (A2X) = α0 (λ2X) and α1 (AX) = α1(λX) ⸫ α0 (A2X) + α1 (AX) = α0 (λ2X) + α1(λX) Adding α2X on both sides, we get α0 (A2X) + α1 (AX) + α2X = α0 (λ2X) + α1 ( λ X) + α2X ⇒ (α0 A2 + α1A + α2I)X = (α0λ2 + α1λ + α2)X This means α0λ2 + α1λ + α2 is an eigen value of a α0 A2 + α1A + α2I. This is true for all eigen values of A. ⸫ α0 λ12 + α1λ1 + α2, α0 λ22 + α1λ2 + α2,..., ‚ α0 λn2 + α1λn + α2 are the eigen values of α0 A2 + α1A + α2I. Note 1. The eigen values of the unit matrix 2. The eigen values of a triangular matrix 3. If λ is an eigen value of A then AX = λX. We have seen A2X = λ2X, ..., AmX = λmX. Thus the eigen values of A, A2, …, Am are λ, λ2, ..., λm which are all different. But they all have the same eigen vector X. Similarly, λ and α0 λ2 + α1λ + α2 are eigen values of A and α0 A2 + α1A + α2I. But they have the same eigen vector X. WORKED
EXAMPLES Example 14 Find the sum and product of the eigen values of the matrix Solution Sum of the eigen values = Sum of the elements on the main diagonal = 1 + 0 + (-3) = −2 Product of the eigen values = |A| = = 1(0 + 3) − 2 (−3 + 6) − 2(−1 – 0) = 3 – 6 + 2 = −1 Example 15 If 2 and 3 are eigen values of A = Solution Given 2 and 3 are two eigen values of A. Let λ be the 3rd eigen value. We know, sum of the eigen values = sum of the diagonal elements. ⇒ 2 + 3 + λ = 3 + (−3) + 7 ⇒ λ = 2 So, eigen values of A are 2, 2, 3 ⸫ Eigen values of A-1 are 1/2, 1/2, 1/3 and eigen values of A3 are 23, 23, 33 ⇒ 8, 8, 27. Example 16 If Solution Example 17 If A = Solution Expanding by C1, (3 - λ) (2 - λ) (5 - λ) = 0 ⇒ λ = 3, 2, 5 are the eigen values of A. ⸫ the eigen values of A2 - 2A + I are 32 – 2 ⸱ 3 + 1, 22 - 2 ⸱ 2 + 1, 52 - 2.5 + 1 i.e., the eigen values of A2 - 2A + I are 4, 1, 16. Example 18 The product of two eigen values of the matrix A = Solution Let λ1, λ2, λ3 be the eigen values of A. Given λ1 ⸱ λ2 = 16 We know that λ1⸱ λ2⸱ λ3 = |A| = 6(9 − 1) + 2(−6 + 2) + 2(2 − 6) ⇒ 16 λ3 = 48 – 8 – 8 - 32 ⇒ λ3 = 2 Example 19 Find the eigen values of the matrix Solution Let A = The characteristic equation of A is |A — λI| = 0 Example 20 If α, β are the eigen values of Solution Let A = EXERCISE 1.1 Find eigen values and eigen vectors of the following
matrices. ANSWERS TO EXERCISE 1.1 1. λ = 1, 3, -4; eigen vectors 2. λ = 0, −1, 2; eigen vectors 3. λ= -3, -3, 5; eigen vectors 4. λ = 3, 6, 9; eigen vectors 5. λ = 2, 2, 8; eigen vectors 6. λ = −2, 3, 6; eigen vectors 7. λ = 1, 1, 4; eigen vectors
are eigen values of A-1.
are 1, 1, 1 and the corresponding eigen vectors are
which are independent.
are the main diagonal elements λ1, λ2,λ3
find the eigen values of A-1 and A3.
is an eigen vector of the matrix
find the corresponding eigen value.
find the eigen values of A2 - 2A + I .
is 16. Find the third eigen value.
Hence find the matrix whose eigen values are 1/6 and −1.
form the matrix whose eigen values are α3, β3.
Since α, β are the eigen values of A, by property 5(ii), α3, β3 are eigen values of A3.
Matrices and Calculus: Unit I: Matrices : Tag: : Matrices - Properties of eigen values
Matrices and Calculus
MA3151 1st semester | 2021 Regulation | 1st Semester Common to all Dept 2021 Regulation